CBCS SCHEME

USN

2

Fifth Semester B.E. Degree Examination, Feb./Mar. 2022 Design of RC Structural Elements

Time: 3 hrs.

Max. Marks: 100

17CV51

CENTRA

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. Use of Code IS456:2000 and SP16 is permitted.

Module-1

- 1 a. What are the different loads to be considered in the design of a reinforced concrete element? (08 Marks)
 - b. What is stress block? Derive from the fundamentals the expression for the area of stress block $0.36f_{ck}x_u$ and depth of centre of compressive force from the extreme fibre in compression $0.42x_u$. (12 Marks)

OR

- a. Explain (i) Short term deflection (ii) Long term deflection (iii) Side face reinforcement.
 - b. A rectangular simply supported beam of span 5m is 300×650mm in cross section and is reinforced with 3 bars of 20mm on tension side at an effective cover of 50mm determine the short deflection due to an imposed working load of 20 kN/m excluding self weight. Assume grade of concrete M₂₀ and steel as Fe 415. (12 Marks)

Module-2

- 3 a. Differentiate between under reinforced, over reinforced and balanced section. (08 Marks)
 b. A single reinforced concrete beam 250×450mm deep upto the centre of reinforcement is
 - reinforced with 3-16mm diameter at an effective cover 50mm, effective span 6m. M_{20} concrete and Fe415 steel. Determine the central point load that can be supported in addition to the self weight. (12 Marks)

OR

- A reinforced concrete beam has a support section with a width of 250mm and effective depth of 500mm. The support section is reinforced with 3 bars of 20mm diameter on the tension side. 2 legged 8mm diameter strings are provided at a spacing of 200mm centre to centre. Calculate the shear strength of the support section for M20 grade concrete and Fe415 steel. (10 Marks)
 - b. A Tee beam has the following data:
 - (i) C/C spacing of beams = 3.20m
 - (ii) Simply supported effective span of beam = 8m.
 - (iii) Depth of slab = 150mm,
 - (iv) Size of web of beam = 250×500 mm

Calculate the moment of Resistance for balanced section

(10 Marks)

Module-3

A Tee beam slab floor of an office comprises a slab 150mm thick spanning between ribs of 250mm wide spaced at 3.2m centre to centre. Clear span of beam = 7.70m. The beam is 600mm deep including slab and simply supported over walls of 300mm wide. Live load on floor = 4 kN/m^2 . Floor and ceiling finish = 0.75 kN/m^2 . The beam also support a portion wall transmits a load of 12 kN/m. Design one of the intermediate beam for flexure and shear. Also check for beam for deflection control. Assume effective cover = 50 mm M_{20} grade concrete and Fe 415 steel. (20 Marks)

5

17CV51

(06 Marks)

OR

- 6 a. Distinguish between L beam and T beam.
 - b. A rectangular beam 230mm \times 550mm deep is subjected to a sagging bending moment of 40 kNm, shear force of 30 kN and twisting moment of 11.5 kNm at a given section at service state. Design the reinforcement if M₂₀ grade concrete and Fe415 steel are used. Sketch the details. (14 Marks)

Module-4

7 Design a RCC slab for an office floor 3.5×5.5 m all four edges discontinuous and corners held down. The live load is 3 kN/m^2 . Assume floor finish and ceiling finish as 1 kN/m^2 . Use M₂₀ grade concrete and Fe415 steel. Sketch the reinforcement details. (20 Marks)

OR

- 8 a. Distinguish between one-way and two-way slab.
 - b. Design the middle flight of a open well type stair case to be provided for a stair case to be provided for a stair hall of size 3.25×3.25 m. Size of open well = $1.25m \times 1.25m$. Floor to floor height = 3.6m. Size of landing at each corner = $1m \times 1m$. Thickness of stair hall wall is 230mm. The stair slab is embedded into the wall by 200mm. The live load on stair = 3 kN/m^2 . Calculate the area of steel required at midspan of flight. (14 Marks)

<u>Module-5</u>

- 9 a. Design a column 4m long restrained in position and direction at both ends to carry an axial load of 1600 kN. Use M-20 grade concrete and Fe-415 grade steel. Sketch the reinforcement details.
 (10 Marks)
 - b. Design a R.C. column, 400mm square to carry an ultimate load of 1000 kN and ultimate moment of 160 kNm. Use M₂₀ concrete and Fe415 steel. Provide a cover of 40mm.

(10 Marks)

OR

10 Design an isolated footing of uniform thickness for an RC square column of size $500\text{mm} \times 500\text{mm}$ bearing a vertical load of 600 kN. The safe bearing capacity of the soil may be taken as 120 kN/m^2 . Use M₂₀ grade concrete and Fe-415 grade steel. Sketch the reinforcement details. (20 Marks)

2 of 2

- .
- (06 Marks)